{ "id": "2003.07389", "version": "v1", "published": "2020-03-16T18:12:53.000Z", "updated": "2020-03-16T18:12:53.000Z", "title": "On $\\mathsf{G}$-isoshtukas over function fields", "authors": [ "Paul Hamacher", "Wansu Kim" ], "comment": "22 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "In this paper we classify isogeny classes of global $\\mathsf{G}$-shtukas over a smooth projective curve $C/\\mathbb{F}_q$ (or equivalently $\\sigma$-conjugacy classes in $\\mathsf{G}(\\mathsf{F} \\otimes_{\\mathbb{F}_q} \\overline{\\mathbb{F}_q})$ where $\\mathsf{F}$ is the field of rational functions of $C$) by two invariants $\\bar\\kappa,\\bar\\nu$ extending previous works of Kottwitz. This result can be applied to study points of moduli spaces of $\\mathsf{G}$-shtukas and thus is helpful to calculate their cohomology.", "revisions": [ { "version": "v1", "updated": "2020-03-16T18:12:53.000Z" } ], "analyses": { "subjects": [ "11R32", "14K10", "20G30" ], "keywords": [ "function fields", "isoshtukas", "moduli spaces", "classify isogeny classes", "conjugacy classes" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }