{ "id": "2003.06546", "version": "v1", "published": "2020-03-14T04:04:11.000Z", "updated": "2020-03-14T04:04:11.000Z", "title": "On $p$-class groups of relative cyclic $p$-extensions", "authors": [ "Yasushi Mizusawa", "Kota Yamamoto" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "We prove a general stability theorem for $p$-class groups of number fields along relative cyclic extensions of degree $p^2$, which is a generalization of a finite-extension version of Fukuda's theorem by Li, Ouyang, Xu and Zhang. As an application, we give an example of pseudo-null Iwasawa module over a certain $2$-adic Lie extension.", "revisions": [ { "version": "v1", "updated": "2020-03-14T04:04:11.000Z" } ], "analyses": { "subjects": [ "11R29", "11R23" ], "keywords": [ "class groups", "general stability theorem", "pseudo-null iwasawa module", "adic lie extension", "number fields" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }