{ "id": "2003.06293", "version": "v1", "published": "2020-03-13T13:46:56.000Z", "updated": "2020-03-13T13:46:56.000Z", "title": "All $\\mathbb Q$-gluons are homeomorphic", "authors": [ "Taras Banakh", "Yaryna Stelmakh" ], "comment": "12 pages", "categories": [ "math.GN" ], "abstract": "In this paper we discover a (super)connected countable Hausdorf space called a $\\mathbb Q$-gluon and prove its topogical uniqueness. A topological spaces $X$ is called $\\mathbb Q$-$gluon$ if it possesses a decreasing sequence $(X_n)_{n\\in\\omega}$ of nonempty closed subsets such that $X_0=X$, $\\bigcap_{n\\in\\omega}X_n=\\emptyset$, for every $n\\in\\omega$ the complement $X\\setminus X_{n+1}$ is homeomorphic to $\\mathbb Q$, and for any non-empty open set $U\\subseteq X_n$ the closure $\\overline U$ contains some set $X_m$. Our main results says that any two $\\mathbb Q$-gluons are homeomorphic. We shall find examples of $\\mathbb Q$-gluons among quotient spaces, orbit spaces of group actions, and projective spaces of some topological vector spaces over countable topological fields. In particular, we prove that the projective space $\\mathbb Q\\mathsf P^\\infty$ of the topological vector space $\\mathbb Q^{<\\omega}=\\{(x_n)_{n\\in\\omega}\\in\\mathbb Q^\\omega:|\\{n\\in\\omega:x_n\\ne0\\}|<\\omega\\}$ is a $\\mathbb Q$-gluon.", "revisions": [ { "version": "v1", "updated": "2020-03-13T13:46:56.000Z" } ], "analyses": { "subjects": [ "54F65", "54G15", "51H10" ], "keywords": [ "homeomorphic", "topological vector space", "projective space", "non-empty open set", "main results says" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }