{ "id": "2003.06242", "version": "v1", "published": "2020-03-13T12:46:44.000Z", "updated": "2020-03-13T12:46:44.000Z", "title": "On gluing Alexandrov spaces with lower Ricci curvature bounds", "authors": [ "Vitali Kapovitch", "Christian Ketterer", "Karl-Theodor Sturm" ], "comment": "24 pages", "categories": [ "math.DG", "math.MG" ], "abstract": "In this paper we prove that in the class of metric measure spaces with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition $RCD(K,N)$ with $K\\in \\mathbb{R}$ and $N\\in [1,\\infty)$ is preserved under doubling and gluing constructions.", "revisions": [ { "version": "v1", "updated": "2020-03-13T12:46:44.000Z" } ], "analyses": { "subjects": [ "53C21", "54E35" ], "keywords": [ "lower ricci curvature bounds", "gluing alexandrov spaces", "riemannian curvature-dimension condition", "metric measure spaces", "alexandrov curvature" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }