{ "id": "2003.06072", "version": "v1", "published": "2020-03-13T00:38:24.000Z", "updated": "2020-03-13T00:38:24.000Z", "title": "A result on the number of cyclic subgroups of a finite group", "authors": [ "Marius Tărnăuceanu" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group and $\\alpha(G)=\\frac{|C(G)|}{|G|}$\\,, where $C(G)$ denotes the set of cyclic subgroups of $G$. In this short note, we prove that $\\alpha(G)\\leq\\alpha(Z(G))$ and we describe the groups $G$ for which the equality occurs. This gives some sufficient conditions for a finite group to be $4$-abelian or abelian.", "revisions": [ { "version": "v1", "updated": "2020-03-13T00:38:24.000Z" } ], "analyses": { "keywords": [ "finite group", "cyclic subgroups", "sufficient conditions", "equality occurs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }