{ "id": "2003.05862", "version": "v1", "published": "2020-03-12T15:54:55.000Z", "updated": "2020-03-12T15:54:55.000Z", "title": "Planar incidences and geometric inequalities in the Heisenberg group", "authors": [ "Katrin Fässler", "Tuomas Orponen", "Andrea Pinamonti" ], "comment": "18 pages", "categories": [ "math.CA" ], "abstract": "We prove that if $P,\\mathcal{L}$ are finite sets of $\\delta$-separated points and lines in $\\mathbb{R}^{2}$, the number of $\\delta$-incidences between $P$ and $\\mathcal{L}$ is no larger than a constant times $$|P|^{2/3}|\\mathcal{L}|^{2/3} \\cdot \\delta^{-1/3}.$$ We apply the bound to obtain the following variant of the Loomis-Whitney inequality in the Heisenberg group: $$ |K| \\lesssim |\\pi_{x}(K)|^{2/3} \\cdot |\\pi_{y}(K)|^{2/3}, \\qquad K \\subset \\mathbb{H}. $$ Here $\\pi_{x}$ and $\\pi_{y}$ are the vertical projections to the $xt$- and $yt$-planes, respectively, and $|\\cdot|$ refers to natural Haar measure on either $\\mathbb{H}$, or one of the planes. Finally, as a corollary of the Loomis-Whitney inequality, we deduce that $$ \\|f\\|_{4/3} \\lesssim \\sqrt{\\|Xf\\| \\|Yf\\| }, \\qquad f \\in BV(\\mathbb{H}), $$ where $X,Y$ are the standard horizontal vector fields in $\\mathbb{H}$. This is a sharper version of the classical geometric Sobolev inequality $\\|f\\|_{4/3} \\lesssim \\|\\nabla_{\\mathbb{H}}f\\|$ for $f \\in BV(\\mathbb{H})$.", "revisions": [ { "version": "v1", "updated": "2020-03-12T15:54:55.000Z" } ], "analyses": { "subjects": [ "28A75", "52C99", "46E35", "35R03" ], "keywords": [ "heisenberg group", "planar incidences", "geometric inequalities", "loomis-whitney inequality", "standard horizontal vector fields" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }