{ "id": "2003.05595", "version": "v1", "published": "2020-03-12T03:22:25.000Z", "updated": "2020-03-12T03:22:25.000Z", "title": "Optimal regularity for the Pfaff system and isometric immersions in arbitrary dimensions", "authors": [ "Siran Li" ], "comment": "10 pages", "categories": [ "math.DG" ], "abstract": "We prove the existence, uniqueness, and $W^{1,2}$-regularity for the solution to the Pfaff system with antisymmetric $L^2$-coefficient matrix in arbitrary dimensions. Hence, we establish the equivalence between the existence of $W^{2,2}$-isometric immersions and the weak solubility of the Gauss--Codazzi--Ricci equations on simply-connected domains. The regularity assumptions of these results are sharp.", "revisions": [ { "version": "v1", "updated": "2020-03-12T03:22:25.000Z" } ], "analyses": { "subjects": [ "58A17", "58A15", "53A07", "53C42", "35M30", "58J60" ], "keywords": [ "isometric immersions", "pfaff system", "arbitrary dimensions", "optimal regularity", "coefficient matrix" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }