{ "id": "2003.05368", "version": "v1", "published": "2020-03-11T15:35:00.000Z", "updated": "2020-03-11T15:35:00.000Z", "title": "Counterexamples to a Conjecture of Ahmadi and Shparlinski", "authors": [ "Taylor Dupuy", "Kiran Kedlaya", "David Roe", "Christelle Vincent" ], "comment": "6 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Ahmadi-Shparlinski conjectured that every ordinary, geometrically simple Jacobian over a finite field has maximal angle rank. Using the L-Functions and Modular Forms Database, we provide two counterexamples to this conjecture in dimension 4.", "revisions": [ { "version": "v1", "updated": "2020-03-11T15:35:00.000Z" } ], "analyses": { "subjects": [ "11G10", "14K15" ], "keywords": [ "conjecture", "counterexamples", "maximal angle rank", "modular forms database", "geometrically simple jacobian" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }