{ "id": "2003.05299", "version": "v1", "published": "2020-03-10T04:37:18.000Z", "updated": "2020-03-10T04:37:18.000Z", "title": "The N-vortex Problem on a Riemann Sphere", "authors": [ "Qun Wang" ], "comment": "32 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "This article investigates the dynamical behaviours of the $n$-vortex problem with vorticity $\\mathbf{\\Gamma}$ on a Riemann sphere $\\mathbb{S}^2$ equipped with an arbitrary metric $g$. From perspectives of Riemannian geometry and symplectic geometry, we study the invariant orbits and prove that with some constraints on vorticity $\\mathbf{\\Gamma}$, the $n$-vortex problem possesses finitely many fixed points and infinitely many periodic orbits for generic $g$. Moreover, we verify the contact structure on hyper-surfaces of the vortex dipole, and exclude the existence of perverse symmetric orbits.", "revisions": [ { "version": "v1", "updated": "2020-03-10T04:37:18.000Z" } ], "analyses": { "subjects": [ "76B47", "30F45", "37J45", "58E05" ], "keywords": [ "riemann sphere", "n-vortex problem", "vortex problem possesses", "perverse symmetric orbits", "contact structure" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }