{ "id": "2003.05246", "version": "v1", "published": "2020-03-11T12:04:43.000Z", "updated": "2020-03-11T12:04:43.000Z", "title": "Proof of the Liouville type theorem for the stationary Navier-Stokes equations in $\\Bbb R^3$", "authors": [ "Dongho Chae" ], "comment": "8 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove Liouville type theorem for the stationary Navier-Stokes equations in $\\Bbb R^3$. If $u$ is a smooth solution to the three dimensional stationary Navier-Stokes equations, which has finite Dirichlet integral, and vanishes uniformly at infinity, then we show that $u=0$ on $\\Bbb R^3$.", "revisions": [ { "version": "v1", "updated": "2020-03-11T12:04:43.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05", "76D03" ], "keywords": [ "liouville type theorem", "dimensional stationary navier-stokes equations", "finite dirichlet integral", "smooth solution" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }