{ "id": "2003.04911", "version": "v1", "published": "2020-03-10T18:06:51.000Z", "updated": "2020-03-10T18:06:51.000Z", "title": "The Smallest Eigenvalue Distribution of the Jacobi Unitary Ensembles", "authors": [ "Shulin Lyu", "Yang Chen" ], "comment": "20 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "In the hard edge scaling limit of the Jacobi unitary ensemble generated by the weight $x^{\\alpha}(1-x)^{\\beta},~x\\in[0,1],~\\alpha,\\beta>0$, the probability that all eigenvalues of Hermitian matrices from this ensemble lie in the interval $[t,1]$ is given by the Fredholm determinant of the Bessel kernel. We derive the constant in the asymptotics of this Bessel-kernel determinant. A specialization of the results gives the constant in the asymptotics of the probability that the interval $(-a,a),a>0,$ is free of eigenvalues in the Jacobi unitary ensemble with the symmetric weight $(1-x^2)^{\\beta}, x\\in[-1,1]$.", "revisions": [ { "version": "v1", "updated": "2020-03-10T18:06:51.000Z" } ], "analyses": { "subjects": [ "15B52", "34E05", "41A60", "42C05" ], "keywords": [ "jacobi unitary ensemble", "smallest eigenvalue distribution", "hard edge scaling limit", "bessel kernel", "bessel-kernel determinant" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }