{ "id": "2003.04400", "version": "v1", "published": "2020-03-09T20:28:01.000Z", "updated": "2020-03-09T20:28:01.000Z", "title": "Optimal power in Liouville theorems", "authors": [ "Salvador Villegas" ], "comment": "3 pages", "categories": [ "math.AP" ], "abstract": "Consider the equation div$(\\varphi^2 \\nabla \\sigma)=0$ in $\\mathbb{R}^N,$ where $\\varphi>0$. It is well-known that if there exists $C>0$ such that $\\int_{B_R}(\\varphi \\sigma)^2 dx\\leq CR^2$ for every $R\\geq 1$ then $\\sigma$ is necessarily constant. In this paper we prove that this result is not true if we replace $R^2$ by $R^k$ for $k>2$ in any dimension $N$.", "revisions": [ { "version": "v1", "updated": "2020-03-09T20:28:01.000Z" } ], "analyses": { "keywords": [ "liouville theorems", "optimal power", "equation div", "well-known" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }