{ "id": "2003.03086", "version": "v1", "published": "2020-03-06T09:01:12.000Z", "updated": "2020-03-06T09:01:12.000Z", "title": "Decay and Strichartz estimates for dispersive equations in an Aharonov-Bohm field", "authors": [ "Junyong Zhang", "Jiqiang Zheng" ], "comment": "14 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We prove decay and Strichartz estimates for the dispersive equations with an Aharonov-Bohm potential which is a singular and scaling-critical potential. The decay estimates generalize the results of \\cite{DF} and the Strichartz estimates extend the weighted Strichartz estimates for Dirac proved in \\cite{CF} so that we answer the open problem raised in \\cite{CF,CF1}. In addition, the argument provides a new simple proof of $L^1\\to L^\\infty$-decay estimate of Schr\\\"odinger equation shown in \\cite{FFFP1}. The key point of the argument is to develop the distorted Fourier theory based on an observation of the eigenfunction of the Schr\\\"odinger operator with Aharonov-Bohm potential.", "revisions": [ { "version": "v1", "updated": "2020-03-06T09:01:12.000Z" } ], "analyses": { "subjects": [ "42B37", "35Q40", "35Q41" ], "keywords": [ "dispersive equations", "aharonov-bohm field", "decay estimate", "aharonov-bohm potential", "strichartz estimates extend" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }