{ "id": "2003.02238", "version": "v1", "published": "2020-03-04T18:25:45.000Z", "updated": "2020-03-04T18:25:45.000Z", "title": "Equivalence Relations and Determinacy", "authors": [ "Logan Crone", "Lior Fishman", "Stephen Jackson" ], "comment": "13 pages", "categories": [ "math.LO" ], "abstract": "We introduce the notion of $(\\Gamma,E)$-determinacy for $\\Gamma$ a pointclass and $E$ an equivalence relation on a Polish space $X$. A case of particular interest is the case when $E=E_G$ is the (left) shift-action of $G$ on $S^G$ where $S=2=\\{0,1\\}$ or $S=\\omega$. We show that for all shift actions by countable groups $G$, and any \"reasonable\" pointclass $\\Gamma$, that $(\\Gamma,E_G)$-determinacy implies $\\Gamma$-determinacy. We also prove a corresponding result when $E$ is a subshift of finite type of the shift map on $2^\\mathbb{Z}$.", "revisions": [ { "version": "v1", "updated": "2020-03-04T18:25:45.000Z" } ], "analyses": { "subjects": [ "03E15", "03E60" ], "keywords": [ "equivalence relation", "shift actions", "shift map", "finite type", "determinacy implies" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }