{ "id": "2003.01366", "version": "v1", "published": "2020-03-03T07:26:52.000Z", "updated": "2020-03-03T07:26:52.000Z", "title": "Ergodic Decomposition of Dirichlet Forms via Direct Integrals and Applications", "authors": [ "Lorenzo Dello Schiavo" ], "comment": "35 pages", "categories": [ "math.FA", "math.PR" ], "abstract": "We study superpositions and direct integrals of quadratic and Dirichlet forms. We show that each quasi-regular Dirichlet space over a probability space admits a unique representation as a direct integral of irreducible Dirichlet spaces, quasi-regular for the same underlying topology. The same holds for each quasi-regular strongly local Dirichlet space over a metrizable Luzin, Radon measure space, and admitting carr\\'e du champ operator. In this case, the representation is only projectively unique.", "revisions": [ { "version": "v1", "updated": "2020-03-03T07:26:52.000Z" } ], "analyses": { "subjects": [ "37A30", "31C25", "60J25", "60J35" ], "keywords": [ "direct integral", "dirichlet forms", "ergodic decomposition", "applications", "quasi-regular strongly local dirichlet space" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }