{ "id": "2003.01253", "version": "v1", "published": "2020-03-02T23:47:35.000Z", "updated": "2020-03-02T23:47:35.000Z", "title": "The absolute discriminant of the endomorphism ring of most reductions of a non-CM elliptic curve is close to maximal", "authors": [ "Alina Carmen Cojocaru", "Matthew Fitzpatrick" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "Let $E/\\mathbb{Q}$ be a non-CM elliptic curve. Assuming GRH, we prove that, for a set of primes $p$ of density $1$, the absolute discriminant of the $\\mathbb{F}_p$-endomorphism ring of the reduction of $E$ modulo $p$ is close to maximal.", "revisions": [ { "version": "v1", "updated": "2020-03-02T23:47:35.000Z" } ], "analyses": { "subjects": [ "11G05", "11G20", "11N05", "11N36", "11N37", "11N57" ], "keywords": [ "non-cm elliptic curve", "absolute discriminant", "endomorphism ring", "assuming grh" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }