{ "id": "2003.01007", "version": "v1", "published": "2020-03-02T16:35:43.000Z", "updated": "2020-03-02T16:35:43.000Z", "title": "Relating a Bott-Cattaneo-Rossi invariant to Alexander polynomials", "authors": [ "David Leturcq" ], "comment": "48 pages", "categories": [ "math.GT" ], "abstract": "In a previous article, we gave a more flexible definition of an invariant $(Z_k)_{k\\in \\mathbb N\\setminus\\{0\\}}$ of Bott, Cattaneo, and Rossi defined using integration on configuration spaces for long knots $\\mathbb R^n\\hookrightarrow\\mathbb R^{n+2}$, for odd $n\\geq 3$. This extended the definition of the invariant $(Z_k)_{k\\in\\mathbb N\\setminus\\{0\\}}$ to all long knots in asymptotic homology $\\mathbb R^{n+2}$, for odd $n\\geq3$. In this article, we obtain a formula for $Z_2$ in terms of linking numbers of some cycles of a surface bounded by the knot, when $n\\equiv \\mod 4$. This yields a relation between $Z_2$ and Alexander polynomials.", "revisions": [ { "version": "v1", "updated": "2020-03-02T16:35:43.000Z" } ], "analyses": { "subjects": [ "57Q45", "57M27", "55R80" ], "keywords": [ "alexander polynomials", "bott-cattaneo-rossi invariant", "long knots", "configuration spaces", "asymptotic homology" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }