{ "id": "2003.00988", "version": "v1", "published": "2020-03-02T16:13:16.000Z", "updated": "2020-03-02T16:13:16.000Z", "title": "Connections between the representation theory of $sl_2 ( \\mathbb{C} )$ and the Virasoro algebra", "authors": [ "Matthew Ondrus", "Emilie Wiesner" ], "categories": [ "math.RT" ], "abstract": "The Lie algebra $sl_2 ( \\mathbb{C} )$ may be regarded in a natural way as a subalgebra of the infinite-dimensional Virasoro Lie algebra, and this suggests there may be connections between the representation theory of the two algebras. In this paper, we explore the restriction to $sl_2 ( \\mathbb{C} )$ of certain induced modules for the Virasoro algebra. Specifically, we consider Virasoro modules induced from so-called polynomial subalgebras, and we show that the restriction of these modules results in twisted versions of familiar modules such as Verma modules and Whittaker modules.", "revisions": [ { "version": "v1", "updated": "2020-03-02T16:13:16.000Z" } ], "analyses": { "subjects": [ "17B68", "17B10", "17B65" ], "keywords": [ "representation theory", "virasoro algebra", "connections", "infinite-dimensional virasoro lie algebra", "whittaker modules" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }