{ "id": "2002.12495", "version": "v1", "published": "2020-02-28T00:42:46.000Z", "updated": "2020-02-28T00:42:46.000Z", "title": "Spectral convergence in geometric quantization --- the case of toric symplectic manifolds", "authors": [ "Kota Hattori", "Mayuko Yamashita" ], "categories": [ "math.DG", "math.MG", "math.SG" ], "abstract": "In this paper, we show the spectral convergence result of $\\overline{\\partial}$-Laplacians when $(X,\\omega)$ is a compact toric symplectic manifold equipped with the natural prequantum line bundle $L$. We consider a family $\\{ J_s\\}_s$ of $\\omega$-compatible complex structures tending to the large complex structure limit, and obtain the spectral convergence of $\\overline{\\partial}$-Laplacians acting on $L^k$.", "revisions": [ { "version": "v1", "updated": "2020-02-28T00:42:46.000Z" } ], "analyses": { "subjects": [ "53D50" ], "keywords": [ "geometric quantization", "compact toric symplectic manifold", "natural prequantum line bundle", "large complex structure limit", "spectral convergence result" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }