{ "id": "2002.12264", "version": "v1", "published": "2020-02-27T17:07:06.000Z", "updated": "2020-02-27T17:07:06.000Z", "title": "Average radial integrability spaces of analytic functions", "authors": [ "Tanausu Aguilar-Hernandez", "Manuel D. Contreras", "Luis Rodriguez-Piazza" ], "comment": "31 pages", "categories": [ "math.FA" ], "abstract": "In this paper we introduce the family of spaces $RM(p,q)$, $1\\leq p,q\\leq +\\infty$. They are spaces of holomorphic functions in the unit disc with average radial integrability. This family contains the classical Hardy spaces (when $p=\\infty$) and Bergman spaces (when $p=q$). We characterize the inclusion between $RM(p_1,q_1)$ and $RM(p_2,q_2)$ depending on the parameters. For $1