{ "id": "2002.11455", "version": "v1", "published": "2020-02-26T13:21:08.000Z", "updated": "2020-02-26T13:21:08.000Z", "title": "A bijection from a finite group to the cyclic group with a divisible property on the element orders", "authors": [ "Mohsen Amiri" ], "comment": "5 pages", "categories": [ "math.GR" ], "abstract": "This paper proves that there exists a bijection $f$ from a finite group $G$ of order $n$ onto a cyclic group of order $n$ such that for each element $x\\in G$ the order of $x$ divides the order of $f(x)$.", "revisions": [ { "version": "v1", "updated": "2020-02-26T13:21:08.000Z" } ], "analyses": { "keywords": [ "finite group", "cyclic group", "element orders" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }