{ "id": "2002.10040", "version": "v1", "published": "2020-02-24T02:22:27.000Z", "updated": "2020-02-24T02:22:27.000Z", "title": "Links in Surfaces and Laplacian Modules", "authors": [ "Daniel S. Silver", "Susan G. Williams" ], "comment": "14 pages, 15 figures", "categories": [ "math.GT" ], "abstract": "Laplacian matrices of weighted graphs in surfaces $S$ are used to define module and polynomial invariants of $Z/2$-homologically trivial links in $S \\times [0,1]$. Information about virtual genus is obtained.", "revisions": [ { "version": "v1", "updated": "2020-02-24T02:22:27.000Z" } ], "analyses": { "subjects": [ "57M25", "05C10" ], "keywords": [ "laplacian modules", "define module", "laplacian matrices", "polynomial invariants", "homologically trivial links" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }