{ "id": "2002.08535", "version": "v1", "published": "2020-02-20T02:29:19.000Z", "updated": "2020-02-20T02:29:19.000Z", "title": "The fraction of an $S_n$-orbit on a hyperplane", "authors": [ "Brendan Pawlowski" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "Huang, McKinnon, and Satriano conjectured that if $v \\in \\mathbb{R}^n$ has distinct coordinates and $n \\geq 3$, then a hyperplane through the origin other than $\\sum_i x_i = 0$ contains at most $2\\lfloor n/2 \\rfloor (n-2)!$ of the vectors obtained by permuting the coordinates of $v$. We prove this conjecture.", "revisions": [ { "version": "v1", "updated": "2020-02-20T02:29:19.000Z" } ], "analyses": { "keywords": [ "hyperplane", "distinct coordinates", "conjecture" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }