{ "id": "2002.08479", "version": "v1", "published": "2020-02-19T22:24:48.000Z", "updated": "2020-02-19T22:24:48.000Z", "title": "Periodic orbits of Linear and Invariant flows on Semisimple Lie groups", "authors": [ "S. N. Stelmastchuk" ], "comment": "7 pages", "categories": [ "math.DS" ], "abstract": "Our main is to study periodic orbits of linear or invariant flows on a real, connected, semisimple Lie group. Since there exist a derivation of Lie algebra to linear or invariant flow, we show that a periodic orbit that is not fixed point of a linear or invariant flow is periodic if and only the eingevalues of derivation is 0 or $\\pm \\alpha i$ for an unique $\\alpha \\neq 0$ and they are semisimple. We apply this result in noncompact case through Iwasawa's decomposition. Furthermore, we present a version of Poincar\\'e-Bendixon's Theorem for periodic orbits.", "revisions": [ { "version": "v1", "updated": "2020-02-19T22:24:48.000Z" } ], "analyses": { "keywords": [ "semisimple lie group", "invariant flow", "study periodic orbits", "derivation", "lie algebra" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }