{ "id": "2002.08212", "version": "v1", "published": "2020-02-19T14:38:31.000Z", "updated": "2020-02-19T14:38:31.000Z", "title": "Polarity of almost all points for systems of non-linear stochastic heat equations in the critical dimension", "authors": [ "Robert C. Dalang", "Carl Mueller", "Yimin Xiao" ], "comment": "30 pages", "categories": [ "math.PR" ], "abstract": "We study vector-valued solutions $u(t,x)\\in\\mathbb{R}^d$ to systems of nonlinear stochastic heat equations with multiplicative noise: \\begin{equation*} \\frac{\\partial}{\\partial t} u(t,x)=\\frac{\\partial^2}{\\partial x^2} u(t,x)+\\sigma(u(t,x))\\dot{W}(t,x). \\end{equation*} Here $t\\geq 0$, $x\\in\\mathbb{R}$ and $\\dot{W}(t,x)$ is an $\\mathbb{R}^d$-valued space-time white noise. We say that a point $z\\in\\mathbb{R}^d$ is polar if \\begin{equation*} P\\{u(t,x)=z\\text{ for some $t>0$ and $x\\in\\mathbb{R}$}\\}=0. \\end{equation*} We show that in the critical dimension $d=6$, almost all points in $\\mathbb{R}^d$ are polar.", "revisions": [ { "version": "v1", "updated": "2020-02-19T14:38:31.000Z" } ], "analyses": { "subjects": [ "60G15", "60J45", "60G60" ], "keywords": [ "non-linear stochastic heat equations", "critical dimension", "nonlinear stochastic heat equations", "valued space-time white noise" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }