{ "id": "2002.07733", "version": "v1", "published": "2020-02-18T17:07:15.000Z", "updated": "2020-02-18T17:07:15.000Z", "title": "The construction problem for Hodge numbers modulo an integer in positive characteristic", "authors": [ "Remy van Dobben de Bruyn", "Matthias Paulsen" ], "comment": "11 pages", "categories": [ "math.AG" ], "abstract": "Let $k$ be an algebraically closed field of positive characteristic. For any integer $m \\geq 2$, we show that the Hodge numbers of a smooth projective $k$-variety can take on any combination of values modulo $m$, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.", "revisions": [ { "version": "v1", "updated": "2020-02-18T17:07:15.000Z" } ], "analyses": { "subjects": [ "14F99", "14G17", "14A10", "14E99", "14F40" ], "keywords": [ "hodge numbers modulo", "positive characteristic", "construction problem", "non-trivial polynomial relations", "serre duality" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }