{ "id": "2002.07142", "version": "v1", "published": "2020-02-17T18:57:34.000Z", "updated": "2020-02-17T18:57:34.000Z", "title": "The continuum parabolic Anderson model with a half-Laplacian and periodic noise", "authors": [ "Alexander Dunlap" ], "comment": "12 pages", "categories": [ "math.PR", "math.AP" ], "abstract": "We construct solutions of a renormalized continuum fractional parabolic Anderson model, formally given by $\\partial_t u=-(-\\Delta)^{1/2}u+\\xi u$, where $\\xi$ is a periodic spatial white noise. To be precise, we construct limits as $\\varepsilon\\to 0$ to solutions of $\\partial_t u_{\\varepsilon}=-(-\\Delta)^{1/2}u_{\\varepsilon}+(\\xi_{\\varepsilon}-C_{\\varepsilon})u_{\\varepsilon}$, where $\\xi_{\\varepsilon}$ is a mollification of $\\xi$ at scale $\\varepsilon$ and $C_{\\varepsilon}$ is a logarithmically diverging renormalization constant. We use a simple renormalization scheme based on that of Hairer and Labb\\'e, \"A simple construction of the continuum parabolic Anderson model on $\\mathbf{R}^{2}$.\"", "revisions": [ { "version": "v1", "updated": "2020-02-17T18:57:34.000Z" } ], "analyses": { "subjects": [ "60H15" ], "keywords": [ "continuum parabolic anderson model", "periodic noise", "continuum fractional parabolic anderson model", "renormalized continuum fractional parabolic anderson", "periodic spatial white noise" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }