{ "id": "2002.07035", "version": "v1", "published": "2020-02-17T16:26:48.000Z", "updated": "2020-02-17T16:26:48.000Z", "title": "Unified approach to spectral properties of multipliers", "authors": [ "Mikael Lindström", "Santeri Miihkinen", "David Norrbo" ], "comment": "19 pages. To appear in Taiwanese J. Math", "categories": [ "math.FA", "math.CV" ], "abstract": "Let $\\mathbb B_n$ be the open unit ball in $\\mathbb C^n$. We characterize the spectra of pointwise multipliers $M_u$ acting on Banach spaces of analytic functions on $\\mathbb B_n$ satisfying some general conditions. These spaces include Bergman-Sobolev spaces $A^p_{\\alpha,\\beta}$, Bloch-type spaces $\\mathcal B_\\alpha$, weighted Hardy spaces $H^p_w$ with Muckenhoupt weights and Hardy-Sobolev Hilbert spaces $H^2_\\beta$. Moreover, we describe the essential spectra of multipliers in most of the aforementioned spaces, in particular, in those spaces for which the set of multipliers is a subset of the ball algebra.", "revisions": [ { "version": "v1", "updated": "2020-02-17T16:26:48.000Z" } ], "analyses": { "subjects": [ "47B35", "47B38" ], "keywords": [ "spectral properties", "unified approach", "multipliers", "open unit ball", "hardy-sobolev hilbert spaces" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }