{ "id": "2002.06700", "version": "v1", "published": "2020-02-16T22:56:55.000Z", "updated": "2020-02-16T22:56:55.000Z", "title": "Non-existence of dead cores in fully nonlinear elliptic models", "authors": [ "Joao Vitor da Silva", "Disson dos Prazeres", "Humberto Ramos Quoirin" ], "categories": [ "math.AP" ], "abstract": "We investigate non-existence of nonnegative dead-core solutions for the problem $$|Du|^\\gamma F(x, D^2u)+a(x)u^q = 0 \\quad \\mbox{in} \\quad \\Omega, \\quad u=0 \\quad \\mbox{ on } \\quad \\partial\\Omega.$$ Here $\\Omega \\subset \\mathbb{R}^N$ is a bounded smooth domain, $F$ is a fully nonlinear elliptic operator, $a: \\Omega \\to \\mathbb{R}$ is a sign-changing weight, $\\gamma \\geq 0$, and $0