{ "id": "2002.06472", "version": "v1", "published": "2020-02-15T23:44:40.000Z", "updated": "2020-02-15T23:44:40.000Z", "title": "First Robin Eigenvalue of the $p$-Laplacian on Riemannian Manifolds", "authors": [ "Xiaolong Li", "Kui Wang" ], "comment": "comments are welcome", "categories": [ "math.AP", "math.DG", "math.SP" ], "abstract": "We consider the first Robin eigenvalue $\\lambda_p(M,\\alpha)$ for the $p$-Laplacian on a compact Riemannian manifold $M$ with nonempty boundary, with $\\alpha \\in \\mathbb{R}$ being the Robin parameter. We prove eigenvalue comparison theorems of Cheng type for $\\lambda_p(M,\\alpha)$. For $\\alpha>0$, we establish sharp lower bound estimates of $\\lambda_p(M,\\alpha)$ in terms of the dimension, inradius, Ricci lower bound and boundary mean curvature lower bound, via comparison with an associated one-dimensional eigenvalue problem. For $\\alpha<0$, the lower bound becomes an upper bound. Our results cover corresponding comparison theorems for the first Dirichlet eigenvalue of the $p$-Laplacian when letting $\\alpha \\to +\\infty$.", "revisions": [ { "version": "v1", "updated": "2020-02-15T23:44:40.000Z" } ], "analyses": { "subjects": [ "35P15", "35P30", "58C40", "58J50" ], "keywords": [ "first robin eigenvalue", "riemannian manifold", "sharp lower bound estimates", "cover corresponding comparison theorems", "boundary mean curvature lower bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }