{ "id": "2002.05872", "version": "v1", "published": "2020-02-14T04:58:53.000Z", "updated": "2020-02-14T04:58:53.000Z", "title": "Mod $\\ell$ Weil representations and Deligne--Lusztig inductions for unitary groups", "authors": [ "Naoki Imai", "Takahiro Tsushima" ], "comment": "26 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "We study a decomposition of the mod $\\ell$ Weil representation of a finite unitary group via Deligne--Lusztig inductions. We study also its decomposition as representations of a symplectic group, and give a construction of mod $\\ell$ Howe correspondence for $(\\mathit{Sp}_{2n},O_2^-)$ including the case where $p=2$.", "revisions": [ { "version": "v1", "updated": "2020-02-14T04:58:53.000Z" } ], "analyses": { "subjects": [ "20C33", "11F27" ], "keywords": [ "weil representation", "deligne-lusztig inductions", "finite unitary group", "decomposition", "howe correspondence" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }