{ "id": "2002.05380", "version": "v1", "published": "2020-02-13T07:49:22.000Z", "updated": "2020-02-13T07:49:22.000Z", "title": "CEB Improves Model Robustness", "authors": [ "Ian Fischer", "Alexander A. Alemi" ], "categories": [ "cs.LG", "stat.ML" ], "abstract": "We demonstrate that the Conditional Entropy Bottleneck (CEB) can improve model robustness. CEB is an easy strategy to implement and works in tandem with data augmentation procedures. We report results of a large scale adversarial robustness study on CIFAR-10, as well as the ImageNet-C Common Corruptions Benchmark, ImageNet-A, and PGD attacks.", "revisions": [ { "version": "v1", "updated": "2020-02-13T07:49:22.000Z" } ], "analyses": { "keywords": [ "model robustness", "large scale adversarial robustness study", "imagenet-c common corruptions benchmark", "conditional entropy bottleneck", "data augmentation procedures" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }