{ "id": "2002.05094", "version": "v1", "published": "2020-02-12T16:59:15.000Z", "updated": "2020-02-12T16:59:15.000Z", "title": "Generic nonsingular Poisson suspension is of type $III_1$", "authors": [ "Alexandre I. Danilenko", "Zemer Kosloff", "Emmanuel Roy" ], "categories": [ "math.DS" ], "abstract": "It is shown that for a dense $G_\\delta$-subset of the subgroup of nonsingular transformations (of a standard infinite $\\sigma$-finite measure space) whose Poisson suspensions are nonsingular, the corresponding Poisson suspensions are ergodic and of Krieger's type $III_1$.", "revisions": [ { "version": "v1", "updated": "2020-02-12T16:59:15.000Z" } ], "analyses": { "subjects": [ "37A40" ], "keywords": [ "generic nonsingular poisson suspension", "finite measure space", "kriegers type", "nonsingular transformations", "corresponding poisson suspensions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }