{ "id": "2002.04420", "version": "v1", "published": "2020-02-11T14:40:40.000Z", "updated": "2020-02-11T14:40:40.000Z", "title": "On the lower bound of the number of abelian varieties over $\\mathbb{F}_p$", "authors": [ "Jungin Lee" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we prove that the number $B(p,g)$ of isomorphism classes of abelian varieties over a prime field $\\mathbb{F}_p$ of dimension $g$ has a lower bound $\\left( \\frac{e}{4} \\right)^{\\frac{1}{4} g^2} p^{\\frac{1}{2} g^2 (1+o(1))}$ as $g \\rightarrow \\infty$. This is the first nontrivial result on the lower bound of $B(p,g)$. We also improve the upper bound $2^{34g^2} p^{\\frac{69}{4} g^2 (1+o(1))}$ of $B(p,g)$ given by Lipnowski and Tsimerman (Duke Math. 167:3403-3453, 2018) to $p^{\\frac{45}{4} g^2(1+o(1))}$.", "revisions": [ { "version": "v1", "updated": "2020-02-11T14:40:40.000Z" } ], "analyses": { "subjects": [ "11G10", "11G25" ], "keywords": [ "lower bound", "abelian varieties", "first nontrivial result", "isomorphism classes", "duke math" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }