{ "id": "2002.04191", "version": "v1", "published": "2020-02-11T03:52:05.000Z", "updated": "2020-02-11T03:52:05.000Z", "title": "On the Area Bounded by the Curve $\\prod_{k = 1}^n |x\\sin(kπ/n) - y\\cos(kπ/n)| = 1$", "authors": [ "Anton Mosunov" ], "comment": "4 pages", "categories": [ "math.NT" ], "abstract": "In 2000 Bean and Laugesen proved that for every integer $n \\geq 3$ the area bounded by the curve $$\\prod\\limits_{k = 1}^n\\left|x\\sin\\left(\\frac{k\\pi}{n}\\right) -y\\cos\\left(\\frac{k\\pi}{n}\\right)\\right| = 1 $$ is equal to $4^{1 - 1/n}B\\left(\\frac{1}{2} - \\frac{1}{n}, \\frac{1}{2}\\right)$, where $B(x, y)$ is the beta function. We provide an elementary proof of this fact based on the polar formula for the area calculation.", "revisions": [ { "version": "v1", "updated": "2020-02-11T03:52:05.000Z" } ], "analyses": { "keywords": [ "beta function", "elementary proof", "polar formula", "area calculation" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }