{ "id": "2002.04064", "version": "v1", "published": "2020-02-10T19:55:57.000Z", "updated": "2020-02-10T19:55:57.000Z", "title": "Regularity of all minimizers of a class of spectral partition problems", "authors": [ "Hugo Tavares", "Alessandro Zilio" ], "comment": "27 pages, 6 figures", "categories": [ "math.AP", "math.OC" ], "abstract": "We study a rather broad class of optimal partition problems with respect to monotone and coercive functional costs that involve the Dirichlet eigenvalues of the partitions. We show a sharp regularity result for the entire set of minimizers for a natural relaxed version of the original problem, together with the regularity of eigenfunctions and a universal free boundary condition. Among others, our result covers the cases of the following functional costs \\[ (\\omega_1, \\dots, \\omega_m) \\mapsto \\sum_{i=1}^{m} \\left( \\sum_{j=1}^{k_i} \\lambda_{j}(\\omega_i)^{p_i}\\right)^{1/p_i}, \\quad \\prod_{i=1}^{m} \\left( \\prod_{j=1}^{k_i} \\lambda_{j}(\\omega_i)\\right), \\quad \\prod_{i=1}^{m} \\left( \\sum_{j=1}^{k_i} \\lambda_{j}(\\omega_i)\\right) \\] where $(\\omega_1, \\dots, \\omega_m)$ are the sets of the partition and $\\lambda_{j}(\\omega_i)$ is the $j$-th Laplace eigenvalue of the set $\\omega_i$ with zero Dirichlet boundary conditions.", "revisions": [ { "version": "v1", "updated": "2020-02-10T19:55:57.000Z" } ], "analyses": { "subjects": [ "35B25", "35J47", "35J50", "35R35", "49N60" ], "keywords": [ "spectral partition problems", "minimizers", "zero dirichlet boundary conditions", "universal free boundary condition", "functional costs" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }