{ "id": "2002.03783", "version": "v1", "published": "2020-02-10T14:28:02.000Z", "updated": "2020-02-10T14:28:02.000Z", "title": "An exponential Diophantine equation related to the difference of powers of two Fibonacci numbers", "authors": [ "Zafer Şiar" ], "categories": [ "math.NT" ], "abstract": "In this paper, we prove that there is no x>=4 such that the difference of x-th powers of two consecutive Fibonacci numbers greater than 0 is a Lucas number.", "revisions": [ { "version": "v1", "updated": "2020-02-10T14:28:02.000Z" } ], "analyses": { "keywords": [ "exponential diophantine equation", "difference", "consecutive fibonacci numbers greater", "x-th powers", "lucas number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }