{ "id": "2002.03341", "version": "v1", "published": "2020-02-09T10:28:25.000Z", "updated": "2020-02-09T10:28:25.000Z", "title": "A semi-small decomposition of the Chow ring of a matroid", "authors": [ "Tom Braden", "June Huh", "Jacob P. Matherne", "Nicholas Proudfoot", "Botong Wang" ], "comment": "40 pages", "categories": [ "math.AG", "math.CO" ], "abstract": "We give a semi-small orthogonal decomposition of the Chow ring of a matroid M. The decomposition is used to give simple proofs of Poincar\\'e duality, the hard Lefschetz theorem, and the Hodge-Riemann relations for the Chow ring, recovering the main result of [AHK18]. We also show that a similar semi-small orthogonal decomposition holds for the augmented Chow ring of M.", "revisions": [ { "version": "v1", "updated": "2020-02-09T10:28:25.000Z" } ], "analyses": { "keywords": [ "chow ring", "semi-small decomposition", "similar semi-small orthogonal decomposition holds", "hard lefschetz theorem", "main result" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }