{ "id": "2002.02199", "version": "v1", "published": "2020-02-06T11:13:11.000Z", "updated": "2020-02-06T11:13:11.000Z", "title": "Special metrics and scales in parabolic geometry", "authors": [ "Michael Eastwood", "Lenka Zalabová" ], "comment": "29 pages", "categories": [ "math.DG" ], "abstract": "Given a parabolic geometry, it is sometimes possible to find special metrics characterised by some invariant conditions. In conformal geometry, for example, one asks for an Einstein metric in the conformal class. Einstein metrics have the special property that their geodesics are distinguished, as unparameterised curves, in the sense of parabolic geometry. This property characterises the Einstein metrics. In this article we initiate a study of corresponding phenomena for other parabolic geometries, in particular for the hypersurface CR and contact Legendrean cases.", "revisions": [ { "version": "v1", "updated": "2020-02-06T11:13:11.000Z" } ], "analyses": { "subjects": [ "53A20", "53A30", "53A40" ], "keywords": [ "parabolic geometry", "special metrics", "einstein metric", "contact legendrean cases", "conformal class" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }