{ "id": "2002.02067", "version": "v1", "published": "2020-02-06T02:02:13.000Z", "updated": "2020-02-06T02:02:13.000Z", "title": "Restrictions on Weil polynomials of Jacobians of hyperelliptic curves", "authors": [ "Edgar Costa", "Ravi Donepudi", "Ravi Fernando", "Valentijn Karemaker", "Caleb Springer", "Mckenzie West" ], "comment": "15 pages, 1 figure", "categories": [ "math.NT" ], "abstract": "Inspired by experimental data, this paper investigates which isogeny classes of abelian varieties defined over a finite field of odd characteristic contain the Jacobian of a hyperelliptic curve. We provide a necessary condition by demonstrating that the Weil polynomial of a hyperelliptic Jacobian must have a particular form modulo 2. For fixed ${g\\geq1}$, the proportion of isogeny classes of $g$ dimensional abelian varieties defined over $\\mathbb{F}_q$ which fail this condition is $1 - Q(2g + 2)/2^g$ as $q\\to\\infty$ ranges over odd prime powers, where $Q(n)$ denotes the number of partitions of $n$ into odd parts.", "revisions": [ { "version": "v1", "updated": "2020-02-06T02:02:13.000Z" } ], "analyses": { "subjects": [ "11G10", "11G20", "11M38" ], "keywords": [ "hyperelliptic curve", "weil polynomial", "restrictions", "isogeny classes", "odd characteristic contain" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }