{ "id": "2002.01917", "version": "v1", "published": "2020-02-05T18:45:11.000Z", "updated": "2020-02-05T18:45:11.000Z", "title": "$L^p$ regularity for a class of averaging operators on the Heisenberg group", "authors": [ "Geoffrey Bentsen" ], "comment": "28 Pages", "categories": [ "math.CA" ], "abstract": "We prove $L^p_{comp}\\to L^p_{s}$ boundedness for averaging operators associated to a class of curves in the Heisenberg group $\\mathbb{H}^1$ via $L^2$ estimates for related oscillatory integrals and Bourgain-Demeter decoupling inequalities on the cone. We also construct a Sobolev space adapted to translations on the Heisenberg group to which these averaging operators map all $L^p$ functions boundedly.", "revisions": [ { "version": "v1", "updated": "2020-02-05T18:45:11.000Z" } ], "analyses": { "subjects": [ "35S30", "44A12", "42B20", "42B35", "46E35" ], "keywords": [ "heisenberg group", "regularity", "bourgain-demeter decoupling inequalities", "sobolev space", "averaging operators map" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }