{ "id": "2002.01446", "version": "v1", "published": "2020-02-04T18:16:02.000Z", "updated": "2020-02-04T18:16:02.000Z", "title": "Twisted conjugacy classes in twisted Chevalley groups", "authors": [ "Sushil Bhunia", "Pinka Dey", "Amit Roy" ], "comment": "15 pages. All comments are welcome", "categories": [ "math.GR" ], "abstract": "Let G be a group and {\\phi} be an automorphism of G. Two elements x, y of G are said to be {\\phi}-twisted if y = gx{\\phi}(g)^{-1} for some g in G. We say that a group G has the R_{\\infty}-property if the number of {\\phi}-twisted conjugacy classes is infinite for every automorphism {\\phi} of G. In this paper, we prove that twisted Chevalley groups over the field k of characteristic zero have the R_{\\infty}-property as well as S_{\\infty}-property if k has finite transcendence degree over \\mathbb{Q} or Aut(k) is periodic.", "revisions": [ { "version": "v1", "updated": "2020-02-04T18:16:02.000Z" } ], "analyses": { "subjects": [ "20E45" ], "keywords": [ "twisted chevalley groups", "twisted conjugacy classes", "finite transcendence degree", "automorphism", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }