{ "id": "2002.01413", "version": "v1", "published": "2020-02-04T17:13:05.000Z", "updated": "2020-02-04T17:13:05.000Z", "title": "An alternative theorem for gradient systems", "authors": [ "Biagio Ricceri" ], "categories": [ "math.AP" ], "abstract": "Here is one of the result obtained in this paper: Let $\\Omega\\subset {\\bf R}^2$ be a smooth bounded domain and let $F, G : {\\bf R}\\to {\\bf R}$ be two $C^1$ functions satisfying the following conditions: $(i)$ for some $p>0$, one has $$\\limsup_{|\\xi|\\to +\\infty}{{|F'(\\xi)|+|G'(\\xi)|}\\over {|\\xi|^p}}<+\\infty\\ ;$$ $(ii)$ $F$ is non-negative, non-decreasing, $\\lim_{\\xi\\to +\\infty}{{F(\\xi)}\\over {\\xi^2}}=0$, $\\lim_{\\xi\\to 0^+}{{F(\\xi)}\\over {\\xi^2}}=+\\infty$ and the function $\\xi\\to {{F'(\\xi)}\\over {\\xi}}$ is strictly decreasing in $]0,+\\infty[$ ; $(iii)$ $G$ is positive and convex. Then, for every positive function $\\alpha\\in L^{\\infty}(\\Omega)$, the problem $$\\cases {-\\Delta u=\\alpha(x) G(v(x))F'(u) & in $\\Omega$ \\cr & \\cr -\\Delta v=-\\alpha(x) F(u(x))G'(v) & in $\\Omega$ \\cr & \\cr u=v=0 & on $\\partial\\Omega$\\cr} $$ has a non-zero weak solution belonging to $L^{\\infty}(\\Omega)\\times L^{\\infty}(\\Omega)$.", "revisions": [ { "version": "v1", "updated": "2020-02-04T17:13:05.000Z" } ], "analyses": { "keywords": [ "gradient systems", "alternative theorem", "non-zero weak solution belonging", "smooth bounded domain", "conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }