{ "id": "2002.01377", "version": "v1", "published": "2020-02-04T15:52:20.000Z", "updated": "2020-02-04T15:52:20.000Z", "title": "Normalisers of primitive permutation groups in quasipolynomial time", "authors": [ "Colva Roney-Dougal", "Sergio Siccha" ], "comment": "11 pages", "categories": [ "math.GR", "cs.CC" ], "abstract": "We show that given generators for subgroups $G$ and $H$ of $\\mathrm{S}_n$, if $G$ is primitive then generators for $\\mathrm{N}_H(G)$ may be computed in quasipolynomial time, namely $2^{O(\\log^3 n)}$. The previous best known bound was simply exponential.", "revisions": [ { "version": "v1", "updated": "2020-02-04T15:52:20.000Z" } ], "analyses": { "subjects": [ "20B15", "20B40", "68W30", "F.2.2", "G.2.1" ], "keywords": [ "primitive permutation groups", "quasipolynomial time", "normalisers", "generators" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }