{ "id": "2002.00859", "version": "v1", "published": "2020-02-03T16:12:16.000Z", "updated": "2020-02-03T16:12:16.000Z", "title": "Isometric study of Wasserstein spaces --- the real line", "authors": [ "György Pál Gehér", "Tamás Titkos", "Dániel Virosztek" ], "comment": "32 pages, 7 figures. Accepted for publication in Trans. Amer. Math. Soc", "categories": [ "math.MG", "math-ph", "math.FA", "math.MP", "math.PR" ], "abstract": "Recently Kloeckner described the structure of the isometry group of the quadratic Wasserstein space $\\mathcal{W}_2\\left(\\mathbb{R}^n\\right)$. It turned out that the case of the real line is exceptional in the sense that there exists an exotic isometry flow. Following this line of investigation, we compute $\\mathrm{Isom}\\left(\\mathcal{W}_p(\\mathbb{R})\\right)$, the isometry group of the Wasserstein space $\\mathcal{W}_p(\\mathbb{R})$ for all $p \\in [1, \\infty)\\setminus\\{2\\}$. We show that $\\mathcal{W}_2(\\mathbb{R})$ is also exceptional regarding the parameter $p$: $\\mathcal{W}_p(\\mathbb{R})$ is isometrically rigid if and only if $p\\neq 2$. Regarding the underlying space, we prove that the exceptionality of $p=2$ disappears if we replace $\\mathbb{R}$ by the compact interval $[0,1]$. Surprisingly, in that case, $\\mathcal{W}_p\\left([0,1]\\right)$ is isometrically rigid if and only if $p\\neq1$. Moreover, $\\mathcal{W}_1\\left([0,1]\\right)$ admits isometries that split mass, and $\\mathrm{Isom}\\left(\\mathcal{W}_1\\left([0,1]\\right)\\right)$ cannot be embedded into $\\mathrm{Isom}\\left(\\mathcal{W}_1(\\mathbb{R})\\right).$", "revisions": [ { "version": "v1", "updated": "2020-02-03T16:12:16.000Z" } ], "analyses": { "subjects": [ "54E40", "46E27", "60A10", "60B05" ], "keywords": [ "real line", "isometric study", "isometry group", "exotic isometry flow", "quadratic wasserstein space" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }