{ "id": "2002.00853", "version": "v1", "published": "2020-02-03T15:59:56.000Z", "updated": "2020-02-03T15:59:56.000Z", "title": "The radial Julia set of $\\exp(z)-2$ is zero-dimensional", "authors": [ "David S. Lipham" ], "comment": "4 pages", "categories": [ "math.DS", "math.GN" ], "abstract": "Let $a\\in (-\\infty,-1)$, let $f_a$ be the complex exponential mapping $z\\mapsto e^z+a$, and let $J(f_a)$ denote the Julia set of $f_a$. We show the radial Julia set $\\{z\\in J(f_a):f_a^n(z)\\not\\to\\infty\\}$ has topological dimension zero. This improves a 2018 result by Vasiliki Evdoridou and Lasse Rempe-Gillen. We put $a=-2$ to see that for Fatou's function $f(z)=z+1+e^{-z}$, the entire non-escaping set $\\{z\\in \\mathbb C:f^n(z)\\not\\to\\infty\\}$ is zero-dimensional.", "revisions": [ { "version": "v1", "updated": "2020-02-03T15:59:56.000Z" } ], "analyses": { "subjects": [ "37F10", "30D05", "54F45" ], "keywords": [ "radial julia set", "zero-dimensional", "topological dimension zero", "entire non-escaping set", "vasiliki evdoridou" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }