{ "id": "2002.00500", "version": "v1", "published": "2020-02-02T22:20:55.000Z", "updated": "2020-02-02T22:20:55.000Z", "title": "Exceptional scatteredness in prime degree", "authors": [ "Andrea Ferraguti", "Giacomo Micheli" ], "categories": [ "math.NT", "cs.IT", "math.IT" ], "abstract": "Let $q$ be an odd prime power and $n$ be a positive integer. Let $\\ell\\in \\mathbb F_{q^n}[x]$ be a $q$-linearised $t$-scattered polynomial of linearized degree $r$. Let $d=\\max\\{t,r\\}$ be an odd prime number. In this paper we show that under these assumptions it follows that $\\ell=x$. Our technique involves a Galois theoretical characterization of $t$-scattered polynomials combined with the classification of transitive subgroups of the general linear group over the finite field $\\mathbb F_q$.", "revisions": [ { "version": "v1", "updated": "2020-02-02T22:20:55.000Z" } ], "analyses": { "subjects": [ "11T06", "11T71", "11R45" ], "keywords": [ "prime degree", "exceptional scatteredness", "odd prime power", "general linear group", "scattered polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }