{ "id": "2002.00364", "version": "v1", "published": "2020-02-02T11:17:46.000Z", "updated": "2020-02-02T11:17:46.000Z", "title": "On optimal recovery of integrals of random processes", "authors": [ "Oleg Kovalenko" ], "categories": [ "math.FA" ], "abstract": "In this paper we prove a sharp Ostrowski type inequality for random processes of certain classes. This inequality is later applied to a solution of the optimal recovery of the integral $\\int_0^1\\xi_tdt$, using the random variables $\\xi_{\\tau_1},\\dots, \\xi_{\\tau_n}$ as an information set, where $\\tau_1,\\dots, \\tau_n$ are random variables. We also consider the problem of the information set optimization.", "revisions": [ { "version": "v1", "updated": "2020-02-02T11:17:46.000Z" } ], "analyses": { "subjects": [ "26D10", "41A17", "41A44", "60G70" ], "keywords": [ "optimal recovery", "random processes", "random variables", "sharp ostrowski type inequality", "information set optimization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }