{ "id": "2001.11861", "version": "v1", "published": "2020-01-31T14:17:20.000Z", "updated": "2020-01-31T14:17:20.000Z", "title": "Revisiting integral functionals of geometric Brownian motion", "authors": [ "Elena Boguslavskaya", "Lioudmila Vostrikova" ], "categories": [ "math.PR", "math.ST", "q-fin.CP", "q-fin.GN", "q-fin.PR", "stat.TH" ], "abstract": "In this paper we revisit the integral functional of geometric Brownian motion $I_t= \\int_0^t e^{-(\\mu s +\\sigma W_s)}ds$, where $\\mu\\in\\mathbb{R}$, $\\sigma > 0$, and $(W_s )_s>0$ is a standard Brownian motion. Specifically, we calculate the Laplace transform in $t$ of the cumulative distribution function and of the probability density function of this functional.", "revisions": [ { "version": "v1", "updated": "2020-01-31T14:17:20.000Z" } ], "analyses": { "keywords": [ "geometric brownian motion", "revisiting integral functionals", "probability density function", "standard brownian motion", "laplace transform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }