{ "id": "2001.11563", "version": "v1", "published": "2020-01-30T20:53:00.000Z", "updated": "2020-01-30T20:53:00.000Z", "title": "Riesz bases of exponentials and the Bohr topology", "authors": [ "Carlos Cabrelli", "Kathryn Hare", "Ursula Molter" ], "comment": "11 pages", "categories": [ "math.CA", "math.FA" ], "abstract": "We provide a necessary and sufficient condition to ensure that a multi-tile $\\Omega$ of $R^d$ of positive measure (but not necessarily bounded) admits a structured Riesz basis of exponentials for $ L^{2}(\\Omega )$. New examples are given and this characterization is generalized to abstract locally compact abelian groups.", "revisions": [ { "version": "v1", "updated": "2020-01-30T20:53:00.000Z" } ], "analyses": { "subjects": [ "42B99", "42C15", "42A10", "05B45", "42A15" ], "keywords": [ "bohr topology", "exponentials", "abstract locally compact abelian groups", "sufficient condition", "structured riesz basis" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }